
Elliptic Curve Digital Signature Algorithm - ECDSA
ECDA Public Parameters: PP = (EC, G, p), G=(xG, yG); ElGamal CS Public Parameters: PP = (p, g)

1<xG<n, 1<yG<n.
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p;
|n|=|p|=256 bits.
PrKA=z <-- randi; z< n, max|z|<=256 bits.
PuKA=z*G=A=(xA, yA); max|A|=2•256=512 bits.

Signature creation for message M
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

h = H(M)=SHA256(M);1.
t <-- randi; |t|≤ 256 bits;2.
R = t*G = t*(xG, yG) = (xR, yR);3.
r = xR mod p; 4.
s = (h + z • r) • t-1 mod p; |s|≤ 256 bits; // Since p is prime, then exists s-1 mod p.5.
 // >> s_m1=mulinv(s,p) % in Octave

Sign(PrKECC=z, h) = ϭ = (r, s) 6.

Calculate u1 = h • s-1 mod p and u2 = r • s-1 mod p 1.

Calculate the curve point V = u1*G + u2*A=(xV, yV) 2.

The signature is valid if R=V; r=xV=xR mod p.3.

Signature vrification: Ver(PuK, ϭ, h)

ECDSA Schnorr Signature

h = H(m); h = H(m);

t randi; t randi;

R = t*G = t*(xG, yG) = (xR, yR); r=gt mod p;

Key generation
1.Install Python 3.9.1.
2.Launch script Packages for joining a libraries.
3.Launch file ECC.
4.If window is escaping, then open hiden windows
 in icon near the Start icon.

ϭ

100_010 ECDSA-KAP

 100_010 ECDSA-KAP-AKAP Page 1

R = t*G = t*(xG, yG) = (xR, yR);

r = xR mod p; |t|≤ 256 bits;

r=gt mod p;

s=(h+z•r)t-1 mod p; |s|≤ 256 bits; s=(h+x•t) mod (p-1);

Sig(PrKECC=z, h) = (r, s) = ϭ; Sig(PrK=x, h) = (r, s) = ϭ;

s-1=(h+z•r)-1t mod p;

ECDSA Verification Schnorr Signature Verification

Compute u1=h•s-1 mod p and

 u2=r•s-1 mod p;

Compute u1= rah mod p and
 u2= gs mod p.

Compute R = u1*G + u2*A = (xR, yR); Signature is valid if: u1= u2

The signature is valid if r=xR mod p. The signature is valid if u1= u2.

Public-key cryptography is based on the intractability of certain mathematical problems.
Early public-key systems are secure assuming that it is difficult to factor a large integer
composed of two or more large prime factors.
For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a
random elliptic curve element with respect to a publicly known base point (generator) is
infeasible: this is the "elliptic curve discrete logarithm problem" (ECDLP).
The security of elliptic curve cryptography depends on the ability to compute a point
multiplication and the inability to compute the multiplicand given the original and
product points.
The size of the elliptic curve determines the difficulty of the problem.
The primary benefit promised by elliptic curve cryptography is a smaller key size,

Correctness:
R=u1*G + u2*A
From the definition of the Public Key A=z*G we have:
R=u1*G + (u2•z)*G
Because EC scalar multiplication distributes over addition we have:
R=(u1 + u2•z)*G
Expanding the definition of u1 and u2 from verification steps we have:
R=(h•s-1 + r•s-1•z)*G
Collecting the common term s-1 we have:
R=[(h + r•z)•s-1]*G
Expanding the definition of s from signature creation we have:
R=[(h + r•z)•(h + r•z)-1•t]*G=t*G.

Since the inverse of an inverse is the original element, and the product of an element's
inverse and the element is the identity, we are left with R = t*G = (xR, yR); r=xR.

Ethereum for signing transactions is using secp256k1 EC together with keccak256 H-function.
secp256k1 has co-factor=1. When the cofactor is 1, everything is fine.
The signature of transaction in Ethereum is placed in the varaibles v, r, s.

Variable v represents the version of signature and (r, s)=ϭ.

 100_010 ECDSA-KAP-AKAP Page 2

https://en.wikipedia.org/wiki/Intractability_(complexity)#Intractability
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Level_of_security
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

The primary benefit promised by elliptic curve cryptography is a smaller key size,
reducing storage and transmission requirements, i.e. that an elliptic curve group could
provide the same level of security afforded by an RSA-based system with a large
modulus and correspondingly larger key: for example, a 256-bit elliptic curve public key
should provide comparable security to a 3072-bit RSA public key.
The U.S. National Institute of Standards and Technology (NIST) has endorsed elliptic
curve cryptography in its Suite B set of recommended algorithms, specifically elliptic
curve Diffie–Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature
Algorithm (ECDSA) for digital signature.
The U.S. National Security Agency (NSA) allows their use for protecting information
classified up to top secret with 384-bit keys.[2]

However, in August 2015, the NSA announced that it plans to replace Suite B with a new
cipher suite due to concerns about quantum computing attacks on ECC.[3]

https://en.wikipedia.org/wiki/SHA-2

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by
the United States National Security Agency(NSA).[3] Cryptographic hash functions are
mathematical operations run on digital data; by comparing the computed "hash" (the
output from execution of the algorithm) to a known and expected hash value, a
person can determine the data's integrity.

SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family
consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512
bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

 100_010 ECDSA-KAP-AKAP Page 3

https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Level_of_security
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-2
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-nsaquantum-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

299d00b11d853ec14c5375186fa182b68f15a7f2d1fb953b8a36bc6fa85cfcbb

54e20a5a2866ebfae896e34b5251820d7fe31dbb953a4192c5dce5e1c6bcfc22f7e32e6f3fb87b8f6c9ca123
4b358c548d1414c84357254ba212a5f2d4016555

9d9863fe058c560a71b9c169886a86dcc2e2c8425068bd46ece246525af71ae
c0404eec29ce0238346329741f5f1ab73ae46f3246fff55be41a9eef7073cb572

5

 100_010 ECDSA-KAP-AKAP Page 4

C:\Users\Eligijus\Documents\Zoom\2021-02-18 18.36.03 Eligijus Sakalauskas's Personal Meeting Room 9999112448

 100_010 ECDSA-KAP-AKAP Page 5

Exponentiating by squaring is a general method for fast computation of
large positive integer powers of a number, or more generally of an element of
a semigroup, like a polynomial or a square matrix.
Some variants are commonly referred to as square-and-multiply algorithms or binary
exponentiation.
These can be of quite general use, for example in modular arithmetic or powering of
matrices.
For semigroups for which additive notation is commonly used, like elliptic
curves used in cryptography, this method is also referred to as double-and-add.
From <https://en.wikipedia.org/wiki/Exponentiation_by_squaring>

 100_010 ECDSA-KAP-AKAP Page 6

https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Semigroup
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Abelian_group#Notation
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Exponentiation_by_squaring

 100_010 ECDSA-KAP-AKAP Page 7

