
Elliptic Curve Digital Signature Algorithm - ECDSA
ECDA Public Parameters: PP = (EC, G, p),  G=(xG, yG); ElGamal CS Public Parameters: PP = (p, g)

1<xG<n, 1<yG<n.  
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p; 
|n|=|p|=256 bits.
PrKA=z <-- randi;  z< n, max|z|<=256 bits.
PuKA=z*G=A=(xA, yA); max|A|=2•256=512 bits.

Signature creation for message M
Signature is formed on the h-value h of Hash function of M. 
Recommended to use SHA256 algorithm

h = H(M)=SHA256(M);1.
t <-- randi; |t|≤ 256 bits;2.
R =   t*G = t*(xG, yG) = (xR, yR);3.
r = xR mod p;  4.
s = (h + z • r) • t-1 mod p; |s|≤ 256 bits;  // Since p is prime, then exists s-1 mod p.5.
                                                                      // >> s_m1=mulinv(s,p)      % in Octave

Sign(PrKECC=z, h) = ϭ = (r, s) 6.

Calculate u1 = h • s-1 mod p and u2 = r • s-1 mod p 1.

Calculate the curve point V = u1*G + u2*A=(xV, yV) 2.

The signature is valid if  R=V; r=xV=xR mod p.3.

Signature vrification: Ver(PuK, ϭ, h)

ECDSA Schnorr Signature

h = H(m); h = H(m);

t randi; t randi;

R = t*G = t*(xG, yG) = (xR, yR); r=gt mod p;

Key generation
1.Install Python 3.9.1.
2.Launch script Packages for joining a libraries.
3.Launch file ECC.
4.If window is escaping, then open hiden windows
    in icon near the Start icon.

ϭ
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R = t*G = t*(xG, yG) = (xR, yR);

r = xR mod p;  |t|≤ 256 bits;

r=gt mod p;

s=(h+z•r)t-1 mod p; |s|≤ 256 bits; s=(h+x•t) mod (p-1);

Sig(PrKECC=z, h) = (r, s) = ϭ;   Sig(PrK=x, h) = (r, s) = ϭ; 

s-1=(h+z•r)-1t mod p;

ECDSA Verification Schnorr Signature Verification

Compute u1=h•s-1 mod p and

                u2=r•s-1 mod p;

Compute u1= rah mod p and
                u2= gs mod p.

Compute R = u1*G + u2*A = (xR, yR);  Signature is valid if: u1= u2

The signature is valid if r=xR mod p. The signature is valid if  u1= u2.

Public-key cryptography is based on the intractability of certain mathematical problems. 
Early public-key systems are secure assuming that it is difficult to factor a large integer 
composed of two or more large prime factors. 
For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a 
random elliptic curve element with respect to a publicly known base point (generator) is 
infeasible: this is the "elliptic curve discrete logarithm problem" (ECDLP). 
The security of elliptic curve cryptography depends on the ability to compute a point 
multiplication and the inability to compute the multiplicand given the original and 
product points. 
The size of the elliptic curve determines the difficulty of the problem.
The primary benefit promised by elliptic curve cryptography is a smaller key size, 

Correctness:
R=u1*G + u2*A
From the definition of the Public Key A=z*G we have:
R=u1*G + (u2•z)*G
Because EC scalar multiplication distributes over addition we have:
R=(u1 + u2•z)*G
Expanding the definition of u1 and u2 from verification steps we have:
R=(h•s-1 + r•s-1•z)*G
Collecting the common term s-1 we have:
R=[(h + r•z)•s-1]*G
Expanding the definition of s from signature creation we have:
R=[(h + r•z)•(h + r•z)-1•t]*G=t*G.

Since the inverse of an inverse is the original element, and the product of an element's 
inverse and the element is the identity, we are left with R = t*G  = (xR, yR); r=xR.

Ethereum for signing transactions is using secp256k1 EC together with keccak256 H-function.
secp256k1 has co-factor=1. When the cofactor is 1, everything is fine.
The signature of transaction in Ethereum is placed in the varaibles v, r, s.

Variable v represents the version of signature and (r, s)=ϭ. 
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The primary benefit promised by elliptic curve cryptography is a smaller key size, 
reducing storage and transmission requirements, i.e. that an elliptic curve group could 
provide the same level of security afforded by an RSA-based system with a large 
modulus and correspondingly larger key: for example, a 256-bit elliptic curve public key 
should provide comparable security to a 3072-bit RSA public key.
The U.S. National Institute of Standards and Technology (NIST) has endorsed elliptic 
curve cryptography in its Suite B set of recommended algorithms, specifically elliptic 
curve Diffie–Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature 
Algorithm (ECDSA) for digital signature. 
The U.S. National Security Agency (NSA) allows their use for protecting information 
classified up to top secret with 384-bit keys.[2]

However, in August 2015, the NSA announced that it plans to replace Suite B with a new 
cipher suite due to concerns about quantum computing attacks on ECC.[3]

https://en.wikipedia.org/wiki/SHA-2

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by 
the United States National Security Agency(NSA).[3] Cryptographic hash functions are 
mathematical operations run on digital data; by comparing the computed "hash" (the 
output from execution of the algorithm) to a known and expected hash value, a 
person can determine the data's integrity.

SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family 
consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 
bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.
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Exponentiating by squaring is a general method for fast computation of 
large positive integer powers of a number, or more generally of an element of 
a semigroup, like a polynomial or a square matrix. 
Some variants are commonly referred to as square-and-multiply algorithms or binary 
exponentiation. 
These can be of quite general use, for example in modular arithmetic or powering of 
matrices. 
For semigroups for which additive notation is commonly used, like elliptic 
curves used in cryptography, this method is also referred to as double-and-add.
From <https://en.wikipedia.org/wiki/Exponentiation_by_squaring> 
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